

TEC2017-88169-R MobiNetVideo (2018-2020-2021)

Visual Analysis for Practical Deployment of Cooperative Mobile Camera

Networks

D4

Deployment and application scenarios

Video Processing and Understanding Lab

Escuela Politécnica Superior

Universidad Autónoma de Madrid

Supported by

D4 Deployment and application scenarios

AUTHORS LIST

José M. Martínez josem.martinez@uam.es

Álvaro García-Martín alvaro.garcia@uam.es

Marcos Escudero-Viñolo Marcos.escudero@uam.es

Pablo Carballeira López Pablocarballeiera@uam.es

Juan Carlos San Miguel Juancarlos.sanmiguel@uam.es

HISTORY

Version Date Editor Description

0.1 16/07/2021 José M. Martínez First Draft version

0.2 12/06/2019 José M. Martínez Contributions

0.3 24/07/2021 Álvaro García-Martín Contributions

0.4 04/09/2021 Marcos Escudero-Viñolo Contributions

0.5 11/09/2021 Pablo Carballeira López Contributions

0.6 15/09/2021 Juan Carlos San Miguel Contributions

0.7 26/09/2021 José M. Martínez Final Working Draft –

Editorial checking

1.0 28/09/2021 First version

mailto:josem.martinez@uam.es
mailto:Marcos.escudero@uam.es
mailto:Pablocarballeiera@uam.es

D4 Deployment and application scenarios i

CONTENTS:

1. INTRODUCTION .. 1

1.1. DOCUMENT STRUCTURE .. 1

2. APPLICATIONS .. 3

2.1. VEHICLE RE-IDENTIFICATION APPLICATION .. 3

2.1.1. Introduction .. 3

2.1.2. Application ... 3

2.2. APPLICATION FOR CONTINUAL LEARNING ... 6

2.2.1. Introduction .. 6

2.2.2. Interface Description .. 7

2.2.3. Workflow ... 7

2.2.4. Advantages ... 8

2.3. APPLICATION FOR THE AUTOMATIC REGISTRATION OF TRANSITED SPACES. 8

2.3.1. Introduction .. 8

2.3.2. Application ... 9

2.4. OBJECT CLASSIFICATION AND DETECTION MOBILE APPLICATIONS BASED ON

LIGHT CONVOLUTIONAL NEURAL NETWORKS ... 10

2.4.1. Introduction .. 10

2.4.2. Development ... 11

2.4.3. Evaluation ... 13

2.5. APPLICATION FOR DETECTION-AWARE TRACKING OF MULTIPLE OBJECTS 14

2.5.1. Introduction .. 14

2.5.2. Framework ... 15

2.5.3. Included detectors and tracker models ... 16

2.5.4. Correlation metrics for evaluation metrics .. 17

2.5.5. Detectors with different performance ... 17

2.5.6. Evaluation ... 18

3. REFERENCES ... 21

D4 Deployment and application scenarios 1

1. Introduction
This deliverable recapitulates the different applications developed within WP4 during

the 9 months extension of the project (January-September 2021).

1.1. Document structure

This document contains the following chapters:

• Chapter 1: Introduction to this document

• Chapter 2: Description of the applications developed within WP4

D4 Deployment and application scenarios 3

2. Applications

2.1. Vehicle Re-Identification Application

2.1.1. Introduction

Vehicle Re-identification (Vehicle ReID) is a computer vision task whose relevance has

been increasing during the last years due to the growing emergence of smart cities and

Intelligent Transport Systems (ITS) that make use of this technology. For instance, it

allows obtaining knowledge about the traffic flow, which makes it possible to adapt the

traffic lights smartly or provide useful information to the autonomous driving field.

The main objective of Vehicle ReID is to identify a particular vehicle (query) recorded

by a camera among a set of gallery images that have been recorded by different

cameras. In particular, we have participated in the AI City 2021 Challenge

(www.aicitychallenge.org), which asks the participants to provide a ranked list of 100

vehicles sorted according to their similarity to the query. Thus, ideally, the first images

in the list should have the same identity as the query image.

However, the ReID task is composed of different challenges. Firstly, the different

vehicle samples suffer from small inter-class variability due to similar orientation,

colour or model, among other characteristics. In fact, similar backgrounds and

orientations often generate a severe bias that reduces the distance between different

vehicles. Moreover, at the same time, it exists a large variability between frames of the

same vehicle owing to different illumination conditions, resolution, points of view... etc.

Due to these possible drawbacks, it is necessary to analyse the performance of the

algorithms taking into account these challenges. For this reason, it is necessary to

observe the visual results at the same time as the numerical outputs, which allows being

aware of when the algorithm is making mistakes due to these difficulties. For example,

it allows checking when the algorithm is identifying two vehicles erroneously because

they have similar orientations. In addition, it makes it possible to analyze when the

different proposals are solving these types of issues. Therefore, it is considered that the

development of a demo that helps us to evaluate the algorithm in this way is very useful.

2.1.2. Application

The demo is divided into two main steps. Firstly, it is necessary to obtain the numerical

results by using an evaluation code in Matlab. Then, a user interface developed in

Python makes it possible to visualize the results visually and numerically.

As mentioned before, the first step to being able to make use of the proposed demo is to

obtain the numerical results using Matlab. Figure 1 illustrates the appearance of the

evaluation script in which we only have to indicate the file with the algorithm output we

want to evaluate. Thus, by running this script, we obtain the general results that include

the mean Average Precision (mAP) and the CMC-k with k = [1; 5; 10; 15; 20; 30; 45;

D4 Deployment and application scenarios 4

100]. Moreover, this script generates the necessary files to run the user interface. These

files are:

• Text file that includes the AP result for each query and the general results.

• Text file for each query with the correct indexes in the obtained top100 ranking.

Figure 1. Matlab evaluation script: It is only necessary to indicate the file that we want

to evaluate to obtain the mAP and CMC.

Once we have run the Matlab script, it is possible to use the user interface to be able to

navigate through the visual results while viewing the numerical results. Firstly, it is

necessary to run the command: Python visualize2.py in the terminal to start the

interface. Thus, the window shown in Figure 2 appears on the screen. Here we must

indicate in "Txt Dir" the directory where the results are located and press the “load”

button to access the main window of the interface.

D4 Deployment and application scenarios 5

Figure 2. Python User Interface: Initial window. It is necessary to introduce the

pathwhere the results are located and press "load" to access the main window.

Once we pass the initial window, we arrive at the main window (Figure 3). It can be

divided into different blocks. Firstly, on the left we find the query image while the rest

of the images are the top100 ranking. Then, in the ranking, the correct images are

indicated with a green bounding box while the incorrect ones are indicated with red. In

addition, all the candidates have indicated their position in the ranking. Secondly, the

top left corner shows the AP (Average Precision) for each query and the mAP, which is

the average of the different AP and, therefore, it does not change. It allows us to always

know the general result (mAP) while at the same time it allows knowing the particular

result of each query and, therefore, to be able to evaluate them independently.

Furthermore, it includes a control panel to navigate through the queries. It makes it

possible to go to the next or the previous query or to go directly to a specific one. This

panel also has a "More Results" button. This button displays additional results (Figure

4) for deeper analysis of the algorithm performance. In particular, it shows different

values of the CMC.

D4 Deployment and application scenarios 6

Figure 3. Python User Interface: Main window. It contains the query, the top100

ranking and the numerical results. Additionally, it includes a control panel that allows

an easy navigation through the queries.

Figure 4. Python User Interface: Additional results.

2.2. Application for Continual Learning

2.2.1. Introduction

D4 Deployment and application scenarios 7

The application is contextualized in a Continual Learning workspace environment. The

purpose of the interface is to allow the user to select different data and weights every

time the application is run. This way, the user can train and test the model and see the

results without using the console.

2.2.2. Interface Description

The interface is divided into four parts (Figure 5):

- Data: the “Data” area allows the user to select the data from a specific city to

train the model. There is also the possibility to select various cities in order to

combine the data. This makes it possible to use rehearsal techniques. To select a

city, the user must click in the white square on the left of the desired city.

- Weights: this area allows the user to select specific initial weights to train the

model. To do this, the user must click the “Select Weights” button and a File

Explorer opens. Only “.pth” files can be selected. It is mandatory that the

weights are compatible with the architecture.

- Results: this area is only shown after a training process has finished. Since the

validation process is performed in every city, the user is allowed to select any

preferred city to check the accuracy and the recall.

- Train/Quit: the “Train” button calls to the backend scripts which move the data

and run the training process. The application requires selecting data and weights

before running the training, otherwise the training will not be launched. The

“Quit” button finishes the application.

Figure 5. Python User Interface and Results.

2.2.3. Workflow

1. The first step is selecting the desired data. Every time a city is selected, it is

added or removed to/from a list that determines the subset that will be used. This

D4 Deployment and application scenarios 8

is the subset that is moved (and combined if required) to a different directory

when the “Train” button is clicked.

2. The second step is to select the weights. As explained, the user must know the

location of the weights and they must fit the architecture. These weights may

have also been obtained from a previous training.

3. The third step is pressing the “Train” button. This automatically launches the

entire backend process:

a. Data movement: the selected data is moved/combined into another

directory, and a JSON file with the annotations is created.

b. Training: the model, initialized with the selected weights, is trained. The

hyperparameters of the training process can be adjusted in a

configuration file. The weights refreshed after every epoch are also

stored in another folder.

c. Validation: the data from all the cities is processed with the weights

obtained from the last iteration. As a result, the user gets a file (one for

each city) with the metrics accuracy and recall.

4. The metrics are displayed in the interface, highlighted in green, so the user does

not need to search the file. The user can choose any city and its results will be

displayed.

5. The user can press the “Quit” button to switch off the application or restart the

cycle at point 1.

2.2.4. Advantages

To sum up, the advantages of using the interface are:

● The user does not have to know how to use the console (although some

messages are displayed on it).

● The user can select and combine the data from the available cities.

● The user can select the desired weights for model initialization.

● The user can automatically launch the training process pressing a button.

● The user can see the results without searching for the metrics files.

2.3. Application for the automatic registration of
transited spaces.

2.3.1. Introduction

In recent years having a register of the places that a person has visited is a potentially

very powerful tool for several tasks. For instance, it can even be used for tracing

COVID-19 contacts, a ubiquitous topic in these times, or to model routines of a person

to teach a machine. In this application, to better sense the areas attended by a person,

ego-centric point of view (or lifelogging) scenarios are the preferred choice. Previous

work on this is scarce so there is not an accurate and solid method in this vein. Ego-topo

D4 Deployment and application scenarios 9

was the first method reaching promising performance. The method is based on online

constructing a graph with each node associated to an area (e.g., sink) in the place (e.g.,

kitchen) and then identifying the area at which each frame is captured by measuring

similarities through a CNN between the stored areas representations and a video slot

around the frame.

We have extended their approach, improving their results and incorporating new

functionalities to their method before deploying it to a real application. In the first place,

a study has been made of the systems that have led to the current Ego-topo. Next, the

theoretical and algorithmic details of the Ego-topo system were delved into, with the

aim of understanding its strengths and weaknesses. Later, several points of the system

were modified in order to achieve added functionality, including enabling the use of

external videos and the construction of combined graphs between different users. These

combined graphs allowed the development of an application to detect contacts between

two users in a domestic environment, with the aim of infectious diseases tracing. Before

the application development, some weaknesses of the base system that harm its results

were alleviated. The changes were evaluated first subjectively and then objectively with

the creation of semi-automatic region annotations. An example of the created graph for

a kitchen scene is included in Figure 6.

Figure 6. Graph description of the place kitchen in areas, in the example the sink area is

detected as the place the egocentric camera of the person is capturing.

2.3.2. Application

The final purpose of the application is to accumulate statistics on whether two users

have been in the same areas. If they have shared areas, we could denominate this as a

direct or indirect contact, depending if the region is shared simultaneously or in

different moments.

The combined graphs functionality allows to know if two users have been in the same

region. A visit added to a previous node means that both users have passed by there. If

we indicate the exact time at which each video begins, we can also determine if they

have matched the regions simultaneously or not.

D4 Deployment and application scenarios 10

The process can be sketched as follows:

• We get an initial graph with the regions presented in the place to be analyzed.

• With this initial graph we got a combined graph for each input video (coming

from different users).

• We are going to assume that two users enter the place at the same time, and we

will measure if they have been in the same areas, and if they have been in them

at the same time, showing in that case, how long they have remained together.

depicts an example of the graphical user interface.

Figure 7. User Interface of the contact tracing application.

2.4. Object classification and detection mobile
applications based on light Convolutional Neural
Networks

2.4.1. Introduction

In recent years, computer vision has evolved rapidly due to the development of

convolutional neural networks (CNNs), which have enabled an impressive boost in the

performance of several applications that use visual information, such as: image

D4 Deployment and application scenarios 11

classification, object detection, or image segmentation. However, integrating deep-

learning-based computer vision models in mobile devices is a complex problem due to

the computational requirements of CNNs. Lightweight CNNs target this problem by

focusing on the development of memory-efficient and low computational complexity.

This work, which is further developed in the corresponding Master Thesis [1], is

oriented to the development of mobile applications for the tasks of image classification

and object detection using lightweight convolutional networks and quantized models,

reducing their size and computational complexity.

2.4.2. Development

The core deep learning programming framework that has been used for the integration

of the CNN models in the mobile applications is TensorFlow Lite. TensorFlow Lite is

currently in constant development and plays a fundamental role in the integration of

deep learning models in lightweight devices. The development of the mobile

applications has been oriented to enable the use of different pre-trained CNN models

that need to be previously converted into the TensorFlow Lite format. Thus, in addition

to the design and implementation of the mobile apps, the work has been oriented to

compile a framework to convert a CNN model into TensorFlow Lite format and later

allow the insertion of the models into mobile devices with Android operating system

using developer tools.

Figure 8.Examples of the developed image classification and object detection

applications

D4 Deployment and application scenarios 12

Figure 9. Overview of the application architecture (right), in which a pre-trained

model in the TensorFlow Lite format can be integrated (left)

Figure 8 depicts an example of the implemented classification and object detection

applications in action. Figure 9 shows an overview of the software architecture used to

implement the applications. The Android Apps are implemented using a Java API

wrapper class that handles the control of the camera, image capture, etc. and wraps a

C++ API, which is responsible of loading the Tensorflow Lite kernel and the pre-trained

model which is used to perform inference.

Figure 10. Diagram of the interaction of the Java scripts that are used to

implement the mobile applications.

Figure 10 shows the diagram of the functions and interaction of the Java scripts that are

used to implement the mobile applications. The main functions of the scripts is

overviewed here:

• CameraActivity.java, is in charge of creating the graphical interface of the app,

and integrates the functions of the rest of the scripts.
• Camera2BasicFragment.java, contains the class that manages the mobile camera

to capture images that are later processed by the classification or detection

scripts (ImageClassifier.java or DetectorActivity.java)
• AutoFitTextureView.java, continuously executes the re-sizing function on the

images that are captured, and shows them in the graphical interface of the app.
• ImageClassifier.java, integrates with the TensorFlow platform to execute the

TFLite classification models on captured images. It loads the TFLite interpreter

and shows the 3 top-score classes and inference time in the graphic interface.

The application can be configured to used different TFLite models by changing

the path pf the model file and an assets folder that contains the list of class labels

used to train the model.

• DetectorActivity.java, operates similarly to ImageClassifier.java integrating the

TensorFlow platform and executing object detection classification models on

captured images. The script displays the bounding boxes of detected objects

with score over 0.5. Similarly to ImageClassifier.java, the application can be

configured to use different TFLite models by changing the path pf the model file

and an assets folder that contains the list of class labels used to train the model.

D4 Deployment and application scenarios 13

2.4.3. Evaluation

In addition to the development of the apps, the wok has been focused in a comparative

evaluation of different image-classification/object-detection in terms of both

classification/detection performance, and computational complexity. Moreover, the

influence of different levels of quantization in the parameters of the models has been

evaluated. Some representative results in the performance and computational

complexity of both applications are shown in the following Figures.

Figure 11 Top-1 classification accuracy for different classification models and

levels of parameter quantization. X-axis represents the size of the model (in MBs)

and the Y-axis the top-1 performance in a subset of the ImageNet validation set.

Figure 12 Average Precision different object detection models and levels of

parameter quantization. X-axis represents the size of the model (in MBs) and the

Y-axis the Average Precision in the COCO dataset.

D4 Deployment and application scenarios 14

Figure 13 Evaluation of the Computational Complexity of different image

classification models and parameter quantization levels. The computational

complexity is measured by average classification inference times in a Samsung

Galaxy S6 Edge+.

Figure 14 Evaluation of the Computational Complexity of different object

detection models and parameter quantization levels. The computational

complexity is measured by average classification inference times in a Samsung

Galaxy S6 Edge+.

2.5. Application for detection-aware tracking of
multiple objects

2.5.1. Introduction

Multi-Object Tracking (MOT) is a hot topic in the computer vision field. It is a complex

task that requires a detector, to identify objects, and a tracker, to follow them. It is

useful for self-driving, surveillance and robot vision, between others, where research

teams and companies are trying to improve their models. In order to determine which

model performs better, they are scored using tracking metrics.

D4 Deployment and application scenarios 15

Here we explore some of the design decisions to create the work environment, as well

as list the selected the models and metrics to use during the experiments. Experimenting

with metrics requires real data. To simplify the obtaining of results we have created an

environment in which we can combine multiple detectors, tracker and metrics. As

discussed later in this section, the framework facilitates the implementation of different

models, looking for an optimal way to execute and join them.

This environment has been written in Python. The code can be found at the following

link: https://github.com/JorgeMunnozAguado/MOT-experimental-framework

2.5.2. Framework

The proposed framework allows trackers to use bounding boxes from available

detectors and evaluate outputs from any model. To accomplish this objective, we design

the framework as show in the following figure. Here we explain some design details.

Figure 15 Design architecture of the experimental framework for MOT tracking.

The system is composed of these main modules: dataset, detectors, trackers, evaluation,

output and auxiliary programs that help with debugging and testing. Each

module is explained below:

- Dataset module controls the ow of the data for testing and training purposes. All

sets are stored in a folder called dataset/ and must follow the same structure.

Each set must contain the images (in a folder called img1/) and the ground truth

(in the folder called gt/gt.txt).

- To simplify the integration of detectors and trackers we design two

encapsulating classes for detection and tracking. Both classes contains the basic

functionality, helping the integration of the models in an efficient way. Also this

design decision helps to run the models with different configurations, weights

and hyper-parameters.

D4 Deployment and application scenarios 16

- Outputs of detection and tracking models must be stored in a folder. We use a

hierarchy in such a way that we distinguish the results executed by each detector

and tracker.

- Evaluation requires to access the outputs. As shown in the figure, evaluation

have multiple sub-modules. Detection and tracking tests use different metrics,

each sub-module is specialized in evaluating detection or tracking.

In the framework we also include some useful tools to facilitate the obtaining and

analysis of the outputs. A visualization tool was added to debug the models and

generate the images. It could be used to generate videos or figures for multiple

purposes. To make it easy to install and run the framework we added a setup feature.

Running the setup script will download the datasets, create all environments, and

download the models, if needed.

2.5.3. Included detectors and tracker models

The environment, as already mentioned, is mainly made of detection and tracking

models. The framework allows to easily combine both. As already explained, model

integration consists on creating a subclass for a model, from an abstract class. Thus, all

models can be executed from a central main for detection and another for tracking. This

simplifies the methods for testing. In this subsection, models included in the

environment are listed. For ease use, we included pre-trained models as default. There is

also the possibility to train or fine-tune models.

The detection and tracking models included are those found in the following Figures:

Figure 16 List of analysed detection algorithms.

D4 Deployment and application scenarios 17

Figure 17 List of analysed tracking algorithms.

2.5.4. Correlation metrics for evaluation metrics

The correlation matrices are created comparing metrics by combining scores from sets

and models included for the specific test [2]. Process stars by selecting all scores from

two metrics. These two lists of scores are compared by the Pearson product-moment

correlation coefficient. This product returns a value in the range -1 to 1, indicating how

correlated are they. Negative indicates that it is inversely correlated. Each of the boxes

from the matrix was built by this way. The diagonal has the value 1 since we are

comparing the same metric. Half of the matrix is a mirror of the other half, because of

the way it has been constructed.

2.5.5. Detectors with different performance

To run the tests, we decided to use detectors with different performances. We seek to

observe the work of the tracker when the quality of the detections varies. Having

detectors with different performances allows us to check how the tracking metrics

behave in this situation. And check the correlation of the tracking metrics with the

detection ones.

In order to achieve the most reliable results, we used for experiments different versions

of Faster R-CNN model. This allows us to have a homogeneous variety of detectors in

terms of performance. Thus, having detectors with different accuracy allows more

stable results to be achieved. Modifications to the models have been achieved by

varying their hyperparameters. In the following Table you can find the modified values

in addition to the performance in mAP, to check performance gap between models.

D4 Deployment and application scenarios 18

Figure 18 List of detectors used for experiments.

We also include ground truth and public detections to feed the 100% performance gap.

Ground truth detections must have a 100% of accuracy, as the bounding boxes where

extracted from the ground truth files. MOT Challenge includes in their datasets public

detections. These are detections that everyone has. They are used to compare the

efficiency of the trackers using the same detections. Where box score thresh is the score

allowed for a detection to be an object or not. As less threshold more detection will be.

On the other hand, box nms thresh relate with non-maximum suppression. This

technique allows the detector to remove duplicate bounding boxes over the same object.

A high value in this variable means that there will be more bounding boxes.

2.5.6. Evaluation

The correlation matrices are generated with the data obtained from 11 sequences, from

two datasets (MOT17 and MOT20 [2]), 8 detectors and 4 trackers, with a total of 352

possible combinations. In this section we experiment with 6 detection metrics and 6

tracking metrics, making a total of 12 metrics.

At start point, we show the correlation matrix including all the trackers, detectors and

datasets in the following. The correlation matrix includes detection and tracking metrics

to compare. Let's explore detection metrics.

As previously commented, Average Precision or AP is the most used detection metric.

The metric is calculated as the area under the recall / precision curve, check Equation

2.1. mAP is the mean of AP for a set of sequences. As we can notic, mAP and recall are

high correlated. Despite, precision is hardly related to mAP and negative related to

recall. This makes sense since precision and recall are different things.

D4 Deployment and application scenarios 19

Figure 19 Correlation matrix for detection and tracking metrics using selected

detectors and trackers over MOT17 and MOT20 datasets.

Other interesting features we can notice from Figure 5.1 is the relation of the detection

metrics with TP, FP and FN variables. In the first place, mAP and recall are negative

related to FN. Similar with precision and FP. Checking the formulas we end with an

answer. Both FN and FP are in the denominator of recall and precision respectively.

Once the correlation between detection metrics has been studied, we proceed to

analyze the tracking metrics. There are multiple metrics used in this context. First

noticeable feature is that HOTA, IDF1 and ATA are high correlated between them. By

analyzing the equations of the metrics, we can notice that are trace-based metrics. Our

suspicions were confirmed in previous publications [2], where they commented that

IDF1 and ATA are very similar with the difference that ATA measures the fraction of

correct tracks. On the other hand, HOTA uses a double formula to evaluate detection

and tracking separately.

Between tracking metrics we can observe other relevant characteristics. MOTP seems to

be more correlated with IDF1 and ATA than with MOTA, as MOTP mea sures the

average localization accuracy over the TP set. Identity switches (IDSW) measures the

number of switches between objects identifiers (IDs) between two frames. Included as

component of MOTA, shows in the results that it is inversely correlated with the rest of

D4 Deployment and application scenarios 20

the tracking metrics, even if it has not been calculated directly. Means that IDSW is an

important feature to measure tracking performance.

Between detection and tracking metrics we can be found other relevant characteristics.

False Positive (FP) variable is negative correlated with all tracking metrics, but IDSW.

False Negatives (FN) are also negative related with HOTA, IDF1, MOTP and ATA. In

view of the results MOTA barely has relation with FN, unlike IDSW with a high

positive correlation with this variable.

MOTA metric also has other relevant features to consider. In the Figure we can notice

how this MOT metric is highly positively correlated with precision and negatively

related to recall, but not with mAP. This can be problematic as improving the precision

of the detector would notably increase the tracking score The issue of MOTA with

precision was previously discussed in HOTA paper [3]. Other metrics as MOTP, ATA

and IDF1 seems to have the same problem with the relation to precision. Despite this, in

this topic HOTA is performing as expected, but it is high correlated with mAP. This is a

problem, since the metric being related to detection can greatly vary the tracker score

depending on the performance of the detector. Thus, not only the performance of the

tracker would be evaluated.

D4 Deployment and application scenarios 21

3. References
[1] Desarrollo de aplicaciones móviles de clasificación y detección de objetos a

partir de redes convolucionales ligeras (Development of mobile application for

object classification and detection based on light convolutional networks), Paulo

C. Casa Robles (advisor: Pablo Carballeira López), Trabajo Fin de Máster

(Master Thesis), Master en Ingeniería de Telecomunicación, Univ. Autónoma de

Madrid, Jun. 2020.

[2] L. Cehovin, A. Leonardis, and M. Kristan, \Visual object tracking performance

measures revisited," IEEE Transactions on Image Processing, vol. 25, pp. 1261-

1274, 3 2016.

[3] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taix e, and B.

Leibe, \Hota: A higher order metric for evaluating multi-object tracking,"

International Journal of Computer Vision, vol. 129, pp. 548{578, 2 2021.

