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1. Introduction 
This deliverable recapitulates the different applications developed within WP4 during 

the 9 months extension of the project (January-September 2021). 

1.1. Document structure 

This document contains the following chapters: 

• Chapter 1: Introduction to this document 

• Chapter 2: Description of the applications developed within WP4 
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2. Applications 

2.1. Vehicle Re-Identification Application 

2.1.1. Introduction 

Vehicle Re-identification (Vehicle ReID) is a computer vision task whose relevance has 

been increasing during the last years due to the growing emergence of smart cities and 

Intelligent Transport Systems (ITS) that make use of this technology. For instance, it 

allows obtaining knowledge about the traffic flow, which makes it possible to adapt the 

traffic lights smartly or provide useful information to the autonomous driving field. 

 

The main objective of Vehicle ReID is to identify a particular vehicle (query) recorded 

by a camera among a set of gallery images that have been recorded by different 

cameras. In particular, we have participated in the AI City 2021 Challenge 

(www.aicitychallenge.org), which asks the participants to provide a ranked list of 100 

vehicles sorted according to their similarity to the query. Thus, ideally, the first images 

in the list should have the same identity as the query image. 

 

However, the ReID task is composed of different challenges. Firstly, the different 

vehicle samples suffer from small inter-class variability due to similar orientation, 

colour or model, among other characteristics. In fact, similar backgrounds and 

orientations often generate a severe bias that reduces the distance between different 

vehicles. Moreover, at the same time, it exists a large variability between frames of the 

same vehicle owing to different illumination conditions, resolution, points of view... etc. 

 

Due to these possible drawbacks, it is necessary to analyse the performance of the 

algorithms taking into account these challenges. For this reason, it is necessary to 

observe the visual results at the same time as the numerical outputs, which allows being 

aware of when the algorithm is making mistakes due to these difficulties. For example, 

it allows checking when the algorithm is identifying two vehicles erroneously because 

they have similar orientations. In addition, it makes it possible to analyze when the 

different proposals are solving these types of issues. Therefore, it is considered that the 

development of a demo that helps us to evaluate the algorithm in this way is very useful. 

2.1.2. Application 

The demo is divided into two main steps. Firstly, it is necessary to obtain the numerical 

results by using an evaluation code in Matlab. Then, a user interface developed in 

Python makes it possible to visualize the results visually and numerically. 

 

As mentioned before, the first step to being able to make use of the proposed demo is to 

obtain the numerical results using Matlab. Figure 1 illustrates the appearance of the 

evaluation script in which we only have to indicate the file with the algorithm output we 

want to evaluate. Thus, by running this script, we obtain the general results that include 

the mean Average Precision (mAP) and the CMC-k with k = [1; 5; 10; 15; 20; 30; 45; 



    
 

D4 Deployment and application scenarios  4 

 

100]. Moreover, this script generates the necessary files to run the user interface. These 

files are: 

• Text file that includes the AP result for each query and the general results. 

• Text file for each query with the correct indexes in the obtained top100 ranking. 

 

Figure 1. Matlab evaluation script: It is only necessary to indicate the file that we want 

to evaluate to obtain the mAP and CMC. 

 

Once we have run the Matlab script, it is possible to use the user interface to be able to 

navigate through the visual results while viewing the numerical results. Firstly, it is 

necessary to run the command: Python visualize2.py in the terminal to start the 

interface. Thus, the window shown in Figure 2 appears on the screen. Here we must 

indicate in "Txt Dir" the directory where the results are located and press the “load” 

button to access the main window of the interface. 



    
 

D4 Deployment and application scenarios  5 

 

 
Figure 2. Python User Interface: Initial window. It is necessary to introduce the 

pathwhere the results are located and press "load" to access the main window. 

 

Once we pass the initial window, we arrive at the main window (Figure 3). It can be 

divided into different blocks. Firstly, on the left we find the query image while the rest 

of the images are the top100 ranking. Then, in the ranking, the correct images are 

indicated with a green bounding box while the incorrect ones are indicated with red. In 

addition, all the candidates have indicated their position in the ranking. Secondly, the 

top left corner shows the AP (Average Precision) for each query and the mAP, which is 

the average of the different AP and, therefore, it does not change. It allows us to always 

know the general result (mAP) while at the same time it allows knowing the particular 

result of each query and, therefore, to be able to evaluate them independently. 

 

Furthermore, it includes a control panel to navigate through the queries. It makes it 

possible to go to the next or the previous query or to go directly to a specific one. This 

panel also has a "More Results" button. This button displays additional results (Figure 

4) for deeper analysis of the algorithm performance. In particular, it shows different 

values of the CMC. 
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Figure 3. Python User Interface: Main window. It contains the query, the top100 

ranking and the numerical results. Additionally, it includes a control panel that allows 

an easy navigation through the queries. 

 

 
Figure 4. Python User Interface: Additional results. 

 

2.2. Application for Continual Learning 

2.2.1. Introduction 
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The application is contextualized in a Continual Learning workspace environment. The 

purpose of the interface is to allow the user to select different data and weights every 

time the application is run. This way, the user can train and test the model and see the 

results without using the console. 

 

2.2.2. Interface Description 

The interface is divided into four parts (Figure 5): 

- Data: the “Data” area allows the user to select the data from a specific city to 

train the model. There is also the possibility to select various cities in order to 

combine the data. This makes it possible to use rehearsal techniques. To select a 

city, the user must click in the white square on the left of the desired city. 

- Weights: this area allows the user to select specific initial weights to train the 

model. To do this, the user must click the “Select Weights” button and a File 

Explorer opens. Only “.pth” files can be selected. It is mandatory that the 

weights are compatible with the architecture. 

- Results: this area is only shown after a training process has finished. Since the 

validation process is performed in every city, the user is allowed to select any 

preferred city to check the accuracy and the recall. 

- Train/Quit: the “Train” button calls to the backend scripts which move the data 

and run the training process. The application requires selecting data and weights 

before running the training, otherwise the training will not be launched. The 

“Quit” button finishes the application. 

 
Figure 5. Python User Interface and Results. 

2.2.3. Workflow 

1. The first step is selecting the desired data. Every time a city is selected, it is 

added or removed to/from a list that determines the subset that will be used. This 
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is the subset that is moved (and combined if required) to a different directory 

when the “Train” button is clicked. 

2. The second step is to select the weights. As explained, the user must know the 

location of the weights and they must fit the architecture. These weights may 

have also been obtained from a previous training. 

3. The third step is pressing the “Train” button. This automatically launches the 

entire backend process: 

a. Data movement: the selected data is moved/combined into another 

directory, and a JSON file with the annotations is created. 

b. Training: the model, initialized with the selected weights, is trained. The 

hyperparameters of the training process can be adjusted in a 

configuration file. The weights refreshed after every epoch are also 

stored in another folder. 

c. Validation: the data from all the cities is processed with the weights 

obtained from the last iteration. As a result, the user gets a file (one for 

each city) with the metrics accuracy and recall. 

4. The metrics are displayed in the interface, highlighted in green, so the user does 

not need to search the file. The user can choose any city and its results will be 

displayed. 

5. The user can press the “Quit” button to switch off the application or restart the 

cycle at point 1. 

 

2.2.4. Advantages 

To sum up, the advantages of using the interface are: 

● The user does not have to know how to use the console (although some 

messages are displayed on it). 

● The user can select and combine the data from the available cities. 

● The user can select the desired weights for model initialization. 

● The user can automatically launch the training process pressing a button. 

● The user can see the results without searching for the metrics files. 

 

2.3. Application for the automatic registration of 
transited spaces.  

2.3.1. Introduction 

In recent years having a register of the places that a person has visited is a potentially 

very powerful tool for several tasks. For instance, it can even be used for tracing 

COVID-19 contacts, a ubiquitous topic in these times, or to model routines of a person 

to teach a machine. In this application, to better sense the areas attended by a person, 

ego-centric point of view (or lifelogging) scenarios are the preferred choice.  Previous 

work on this is scarce so there is not an accurate and solid method in this vein. Ego-topo 



    
 

D4 Deployment and application scenarios  9 

 

was the first method reaching promising performance. The method is based on online 

constructing a graph with each node associated to an area (e.g., sink) in the place (e.g., 

kitchen) and then identifying the area at which each frame is captured by measuring 

similarities through a CNN between the stored areas representations and a video slot 

around the frame. 

 

We have extended their approach, improving their results and incorporating new 

functionalities to their method before deploying it to a real application. In the first place, 

a study has been made of the systems that have led to the current Ego-topo. Next, the 

theoretical and algorithmic details of the Ego-topo system were delved into, with the 

aim of understanding its strengths and weaknesses. Later, several points of the system 

were modified in order to achieve added functionality, including enabling the use of 

external videos and the construction of combined graphs between different users. These 

combined graphs allowed the development of an application to detect contacts between 

two users in a domestic environment, with the aim of infectious diseases tracing. Before 

the application development, some weaknesses of the base system that harm its results 

were alleviated. The changes were evaluated first subjectively and then objectively with 

the creation of semi-automatic region annotations. An example of the created graph for 

a kitchen scene is included in Figure 6. 

 

 
Figure 6. Graph description of the place kitchen in areas, in the example the sink area is 

detected as the place the egocentric camera of the person is capturing. 

 

2.3.2. Application 

 

The final purpose of the application is to accumulate statistics on whether two users 

have been in the same areas. If they have shared areas, we could denominate this as a 

direct or indirect contact, depending if the region is shared simultaneously or in 

different moments.  

 

The combined graphs functionality allows to know if two users have been in the same 

region. A visit added to a previous node means that both users have passed by there. If 

we indicate the exact time at which each video begins, we can also determine if they 

have matched the regions simultaneously or not.  
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The process can be sketched as follows:  

• We get an initial graph with the regions presented in the place to be analyzed. 

• With this initial graph we got a combined graph for each input video (coming 

from different users). 

• We are going to assume that two users enter the place at the same time, and we 

will measure if they have been in the same areas, and if they have been in them 

at the same time, showing in that case, how long they have remained together. 

 

depicts an example of the graphical user interface. 

 

 
 

Figure 7. User Interface of the contact tracing application. 

 

 

2.4. Object classification and detection mobile 
applications based on light Convolutional Neural 
Networks 

2.4.1. Introduction 

In recent years, computer vision has evolved rapidly due to the development of 

convolutional neural networks (CNNs), which have enabled an impressive boost in the 

performance of several applications that use visual information, such as: image 
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classification, object detection, or image segmentation. However, integrating deep-

learning-based computer vision models in mobile devices is a complex problem due to 

the computational requirements of CNNs. Lightweight CNNs target this problem by 

focusing on the development of memory-efficient and low computational complexity. 

This work, which is further developed in the corresponding Master Thesis [1], is 

oriented to the development of mobile applications for the tasks of image classification 

and object detection using lightweight convolutional networks and quantized models, 

reducing their size and computational complexity. 

2.4.2. Development 

The core deep learning programming framework that has been used for the integration 

of the CNN models in the mobile applications is TensorFlow Lite. TensorFlow Lite is 

currently in constant development and plays a fundamental role in the integration of 

deep learning models in lightweight devices. The development of the mobile 

applications has been oriented to enable the use of different pre-trained CNN models 

that need to be previously converted into the TensorFlow Lite format. Thus, in addition 

to the design and implementation of the mobile apps, the work has been oriented to 

compile a framework to convert a CNN model into TensorFlow Lite format and later 

allow the insertion of the models into mobile devices with Android operating system 

using developer tools. 

    
Figure 8.Examples of the developed image classification and object detection 

applications  
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Figure 9.  Overview of the application architecture (right), in which a pre-trained 

model in the TensorFlow Lite format can be integrated (left) 

  

Figure 8 depicts an example of the implemented classification and object detection 

applications in action. Figure 9 shows an overview of the software architecture used to 

implement the applications. The Android Apps are implemented using a Java API 

wrapper class that handles the control of the camera, image capture, etc. and wraps a 

C++ API, which is responsible of loading the Tensorflow Lite kernel and the pre-trained 

model which is used to perform inference.  

 

 
Figure 10.  Diagram of the interaction of the Java scripts that are used to 

implement the mobile applications. 

 

Figure 10 shows the diagram of the functions and interaction of the Java scripts that are 

used to implement the mobile applications. The main functions of the scripts is 

overviewed here: 
 

• CameraActivity.java, is in charge of creating the graphical interface of the app, 

and integrates the functions of the rest of the scripts.  
• Camera2BasicFragment.java, contains the class that manages the mobile camera 

to capture images that are later processed by the classification or detection 

scripts (ImageClassifier.java or DetectorActivity.java) 
• AutoFitTextureView.java, continuously executes the re-sizing function on the 

images that are captured, and shows them in the graphical interface of the app.  
• ImageClassifier.java, integrates with the TensorFlow platform to execute the 

TFLite classification models on captured images. It loads the TFLite interpreter 

and shows the 3 top-score classes and inference time in the graphic interface. 

The application can be configured to used different TFLite models by changing 

the path pf the model file and an assets folder that contains the list of class labels 

used to train the model.  

• DetectorActivity.java, operates similarly to ImageClassifier.java integrating the 

TensorFlow platform and executing object detection classification models on 

captured images. The script displays the bounding boxes of detected objects 

with score over 0.5. Similarly to ImageClassifier.java, the application can be 

configured to use different TFLite models by changing the path pf the model file 

and an assets folder that contains the list of class labels used to train the model. 
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2.4.3. Evaluation 

In addition to the development of the apps, the wok has been focused in a comparative 

evaluation of different image-classification/object-detection in terms of both 

classification/detection performance, and computational complexity. Moreover, the 

influence of different levels of quantization in the parameters of the models has been 

evaluated. Some representative results in the performance and computational 

complexity of both applications are shown in the following Figures. 

 

Figure 11 Top-1 classification accuracy for different classification models and 

levels of parameter quantization. X-axis represents the size of the model (in MBs) 

and the Y-axis the top-1 performance in a subset of the ImageNet validation set. 

 
 

 

Figure 12 Average Precision different object detection models and levels of 

parameter quantization. X-axis represents the size of the model (in MBs) and the 

Y-axis the Average Precision in the COCO dataset.  
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Figure 13 Evaluation of the Computational Complexity of different image 

classification models and parameter quantization levels. The computational 

complexity is measured by average classification inference times in a Samsung 

Galaxy S6 Edge+. 

 
 

 
 

Figure 14 Evaluation of the Computational Complexity of different object 

detection models and parameter quantization levels. The computational 

complexity is measured by average classification inference times in a Samsung 

Galaxy S6 Edge+. 

 

2.5. Application for detection-aware tracking of 
multiple objects 

2.5.1. Introduction 

Multi-Object Tracking (MOT) is a hot topic in the computer vision field. It is a complex 

task that requires a detector, to identify objects, and a tracker, to follow them. It is 

useful for self-driving, surveillance and robot vision, between others, where research 

teams and companies are trying to improve their models. In order to determine which 

model performs better, they are scored using tracking metrics. 
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Here we explore some of the design decisions to create the work environment, as well 

as list the selected the models and metrics to use during the experiments. Experimenting 

with metrics requires real data. To simplify the obtaining of results we have created an 

environment in which we can combine multiple detectors, tracker and metrics. As 

discussed later in this section, the framework facilitates the implementation of different 

models, looking for an optimal way to execute and join them. 

 

This environment has been written in Python. The code can be found at the following 

link: https://github.com/JorgeMunnozAguado/MOT-experimental-framework 

2.5.2. Framework 

The proposed framework allows trackers to use bounding boxes from available 

detectors and evaluate outputs from any model. To accomplish this objective, we design 

the framework as show in the following figure. Here we explain some design details.  

 
Figure 15 Design architecture of the experimental framework for MOT tracking. 

 
The system is composed of these main modules: dataset, detectors, trackers, evaluation, 

output and auxiliary programs that help with debugging and testing. Each 

module is explained below: 

- Dataset module controls the ow of the data for testing and training purposes. All 

sets are stored in a folder called dataset/ and must follow the same structure. 

Each set must contain the images (in a folder called img1/ ) and the ground truth 

(in the folder called gt/gt.txt). 

- To simplify the integration of detectors and trackers we design two 

encapsulating classes for detection and tracking. Both classes contains the basic 

functionality, helping the integration of the models in an efficient way. Also this 

design decision helps to run the models with different configurations, weights 

and hyper-parameters. 
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- Outputs of detection and tracking models must be stored in a folder. We use a 

hierarchy in such a way that we distinguish the results executed by each detector 

and tracker. 

- Evaluation requires to access the outputs. As shown in the figure, evaluation 

have multiple sub-modules. Detection and tracking tests use different metrics, 

each sub-module is specialized in evaluating detection or tracking. 

 

In the framework we also include some useful tools to facilitate the obtaining and 

analysis of the outputs. A visualization tool was added to debug the models and 

generate the images. It could be used to generate videos or figures for multiple 

purposes. To make it easy to install and run the framework we added a setup feature. 

Running the setup script will download the datasets, create all environments, and 

download the models, if needed. 

2.5.3. Included detectors and tracker models 

The environment, as already mentioned, is mainly made of detection and tracking 

models. The framework allows to easily combine both. As already explained, model 

integration consists on creating a subclass for a model, from an abstract class. Thus, all 

models can be executed from a central main for detection and another for tracking. This 

simplifies the methods for testing. In this subsection, models included in the 

environment are listed. For ease use, we included pre-trained models as default. There is 

also the possibility to train or fine-tune models.  

 

The detection and tracking models included are those found in the following Figures: 

 

 

 
Figure 16 List of analysed detection algorithms. 

 

 



    
 

D4 Deployment and application scenarios  17 

 

 
Figure 17 List of analysed tracking algorithms. 

 

2.5.4. Correlation metrics for evaluation metrics 

The correlation matrices are created comparing metrics by combining scores from sets 

and models included for the specific test [2]. Process stars by selecting all scores from 

two metrics. These two lists of scores are compared by the Pearson product-moment 

correlation coefficient. This product returns a value in the range -1 to 1, indicating how 

correlated are they. Negative indicates that it is inversely correlated. Each of the boxes 

from the matrix was built by this way. The diagonal has the value 1 since we are 

comparing the same metric. Half of the matrix is a mirror of the other half, because of 

the way it has been constructed. 

 

2.5.5. Detectors with different performance 

 

To run the tests, we decided to use detectors with different performances. We seek to 

observe the work of the tracker when the quality of the detections varies. Having 

detectors with different performances allows us to check how the tracking metrics 

behave in this situation. And check the correlation of the tracking metrics with the 

detection ones. 

In order to achieve the most reliable results, we used for experiments different versions 

of Faster R-CNN model. This allows us to have a homogeneous variety of detectors in 

terms of performance. Thus, having detectors with different accuracy allows more 

stable results to be achieved. Modifications to the models have been achieved by 

varying their hyperparameters. In the following Table you can find the modified values 

in addition to the performance in mAP, to check performance gap between models. 
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Figure 18 List of detectors used for experiments. 

 

We also include ground truth and public detections to feed the 100% performance gap. 

Ground truth detections must have a 100% of accuracy, as the bounding boxes where 

extracted from the ground truth files. MOT Challenge includes in their datasets public 

detections. These are detections that everyone has. They are used to compare the 

efficiency of the trackers using the same detections. Where box score thresh is the score 

allowed for a detection to be an object or not. As less threshold more detection will be. 

On the other hand, box nms thresh relate with non-maximum suppression. This 

technique allows the detector to remove duplicate bounding boxes over the same object. 

A high value in this variable means that there will be more bounding boxes. 

 

2.5.6. Evaluation 

The correlation matrices are generated with the data obtained from 11 sequences, from 

two datasets (MOT17 and MOT20 [2]), 8 detectors and 4 trackers, with a total of 352 

possible combinations. In this section we experiment with 6 detection metrics and 6 

tracking metrics, making a total of 12 metrics. 

 

At start point, we show the correlation matrix including all the trackers, detectors and 

datasets in the following. The correlation matrix includes detection and tracking metrics 

to compare. Let's explore detection metrics. 

 

As previously commented, Average Precision or AP is the most used detection metric. 

The metric is calculated as the area under the recall / precision curve, check Equation 

2.1. mAP is the mean of AP for a set of sequences. As we can notic, mAP and recall are 

high correlated. Despite, precision is hardly related to mAP and negative related to 

recall. This makes sense since precision and recall are different things. 
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Figure 19 Correlation matrix for detection and tracking metrics using selected 

detectors and trackers over MOT17 and MOT20 datasets. 

 

 

Other interesting features we can notice from Figure 5.1 is the relation of the detection 

metrics with TP, FP and FN variables. In the first place, mAP and recall are negative 

related to FN. Similar with precision and FP. Checking the formulas we end with an 

answer. Both FN and FP are in the denominator of recall and precision respectively. 

 

Once the correlation between detection metrics has been studied, we proceed to  

analyze the tracking metrics. There are multiple metrics used in this context. First 

noticeable feature is that HOTA, IDF1 and ATA are high correlated between them. By 

analyzing the equations of the metrics, we can notice that are trace-based metrics. Our 

suspicions were confirmed in previous publications [2], where they commented that 

IDF1 and ATA are very similar with the difference that ATA measures the fraction of 

correct tracks. On the other hand, HOTA uses a double formula to evaluate detection 

and tracking separately.  

 

Between tracking metrics we can observe other relevant characteristics. MOTP seems to 

be more correlated with IDF1 and ATA than with MOTA, as MOTP mea sures the 

average localization accuracy over the TP set. Identity switches (IDSW) measures the 

number of switches between objects identifiers (IDs) between two frames. Included as 

component of MOTA, shows in the results that it is inversely correlated with the rest of 
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the tracking metrics, even if it has not been calculated directly. Means that IDSW is an 

important feature to measure tracking performance.  

 

Between detection and tracking metrics we can be found other relevant characteristics. 

False Positive (FP) variable is negative correlated with all tracking metrics, but IDSW. 

False Negatives (FN) are also negative related with HOTA, IDF1, MOTP and ATA. In 

view of the results MOTA barely has relation with FN, unlike IDSW with a high 

positive correlation with this variable. 

 

MOTA metric also has other relevant features to consider. In the Figure we can notice 

how this MOT metric is highly positively correlated with precision and negatively 

related to recall, but not with mAP. This can be problematic as improving the precision 

of the detector would notably increase the tracking score The issue of MOTA with 

precision was previously discussed in HOTA paper [3]. Other metrics as MOTP, ATA 

and IDF1 seems to have the same problem with the relation to precision. Despite this, in 

this topic HOTA is performing as expected, but it is high correlated with mAP. This is a 

problem, since the metric being related to detection can greatly vary the tracker score 

depending on the performance of the detector. Thus, not only the performance of the 

tracker would be evaluated. 
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